Optimization of Time-Dependent Particle Tracing
Using Tetrahedral Decomposition

David N. Kenwright and David A. Lane
Computer Sciences Corporation
NASA Ames Research Center, Mail Stop T27A-2, Moffett Field, CA 94035

Abstract

An efficient algorithm is presented for computing particle
paths, streak lines and time lines in time-dependent flows
with moving curvilinear grids. The integration, velocity
interpolation, and step size control are all performed in
physical space which avoids the need to transform the
velocity field into computational space. This leads to
higher accuracy because there are no Jacobian marrix
approximations, and expensive matrix inversions are
eliminated. Integration accuracy is maintained using an
adaptive step size control scheme which is regulated by
the path line curvature. The problem of point location
and interpolation in physical space is simplified by
decomposing hexahedral cells into tetrahedral cells. This
enables the point location to be done analytically and
substantially faster than with a Newton-Raphson iterative
method. Results presented show this algorithm is up to
six times faster than particle tracers which operate on
hexahedral cells and produces almost identical traces.

1. Introduction

Unsteady particle tracing is a relatively new
visualization technique that has emerged because of the
need to visualize unsteady or time-dependent datasets.
Whereas steady-state flow simulations only require one set
of grid and solution data to describe a flow, unsteady flow
simulations may comprise of hundreds or thousands of
time steps of data; each having an associated grid and
solution file. The size of these datasets can run into
hundreds of gigabytes [1,2].

The techniques used for visualizing unsteady flows in
experimental fluid mechanics include path lines, time
lines and streak lines. They are generated by injecting
foreign material such as particles, dye or smoke into the
fluid:

* path line: generated by tracing the path of a single
particle (also called a particle path).
* time line: generated by tracing a line of particles

which are all released at the same time.
* streak line:. generated by continuously injecting
particles from a fixed location.

In this study we were interested in generating streak
lines from large time-dependent computational fluid
dynamics (CFD) simulations. In computational flow
visualization, streak lines are generated by releasing
particles at discrete intervals, usually in accordance with
the simulation time steps. This continuous injection leads
to a rapid growth of the number of particles in the flow,
all of which must be tracked until they leave the flow-field
or until the simulation ends, which ever comes first. It is
not uncommon for there to be several thousand active
particles in an unsteady flow, so it is essential that the
advection or tracing process is as efficient as possible.

A time-accurate particle tracing algorithm is presented
in this paper which offers improved scalar performance
without sacrificing accuracy. The algorithm can be used to
compute path lines, time lines, or streak lines in
structured or unstructured grids.

2, Previous work

Many algorithms have been presented for particle
tracing in steady flows yet relatively few consider the
extension to unsteady flows. This extension is not always
trivial because the time varying nature of the flow and grid
adds complexity to almost every part of the algorithm [2].
Also, techniques used to speed-up steady flow algorithms,
such as loading the entire solution into memory or pre-
evaluating computational space velocities, are not
possible with large time-dependent datasets.

To improve particle tracing performance, Shirayama
[3] transformed the velocity vector field into a uniform
(computational) space and decomposed hexahedral cells
into tetrahedra. The particles were then traced in
computational space. Shirayama’s approach significantly
reduces the number of calculations although accuracy
suffers because of approximations made in the
transformation to computational space. This problem is
discussed further in section 3.

Significant gains in performance can be achieved by
particle tracing on parallel [4,5] and multi-processor
systems [6]. Particle tracing is easily parallelized since
each particle can be traced independently. The algorithm
presented here improves scalar performance although could
be parallelized to achieve even greater speed-ups.

(See color plates, page CP-38)

1070-2385/95 $4.00 © 1995 IEEE

321

3. Physical vs computational space

Particle tracing algorithms for structured curvilinear
grids can divided into those that trace in computational
space and those that trace in physical space.
Computational space schemes require the curvilinear grid
and the associated velocity field to be mapped onto a
uniform rectangular grid using Jacobian transformations.
This can either be done as a preprocessing step for the
whole grid [7] or locally on-the-fly as required by the
tracking process [8]. Particles are then advected in the
logical grid space rather than in physical space.

The main disadvantage of tracing in computational
space is that the transforming Jacobian matrices are only
approximations and so the transformed vector field may be
discontinuous. Also, if there are irregularities in the grid,
such as cells with collapsed edges, the transformed
velocities may be infinite [9]. Analyses by Sadarjoen et
al. [10] and Hultquist [11] in steady flows have shown
that this mapping technique produces significant errors in
distorted curvilinear grids. Calculating Jacobian matrices
in unsteady flows with moving grids is more inaccurate
because each matrix has three additional time-dependent
terms which must be approximated [12].

Physical space tracing schemes are more accurate
because the interpolation and integration processes are
done in Cartesian space which eliminates the need to
evaluate Jacobian matrices and transform the velocity
field. The only disadvantage is that the task of locating
particles is more complicated and hence more expensive.
This problem is addressed in this paper. An explicit point
location technique is presented which has yielded a
significant speed-up over the most common point location
technique; the Newton-Raphson iterative method.

4. Physical space tracing algorithm

Physical space tracing algorithms proceed by firstly
searching out the element or cell which bounds a given
point. This is termed the cell search or point location
process. Once found, the velocity is evaluated at that point
by interpolating the nodal velocities. In unsteady flows,
the velocity components usually need to be interpolated
temporally as well as spatially. This necessitates loading
two or more time steps of data into memory. Intermediate
positions of the grid may also have to be interpolated if
the grid changes in time. The particle’s path is determined
by solving the differential equation for a field line:

v r(),t) M

dt

where r is the particle’s location and v the particle’s
velocity at time t. Integrating (1) yields:

322

ey = 1+ f Vo d o)
The integral term on the right hand side of this equation
can be evaluated numerically using a multi-stage method
(e.g., Runge-Kutta, Bulirsch-Stoer) or a multi-step
method (e.g., Backwards differentiation, Adams-
Bashforth). Issues concerning the accuracy and stability of
these methods are discussed by Darmofal and Haimes {13].
Regardless of how it is solved, the end result is a
displacement which when added to the current position,
r(t), gives the new particle location at time t+At.

The essential steps in a time-dependent particle
tracing algorithm are as follows:

1. Specify the seed point for a particle in physical
space, (X,y,z.1).

2. Perform a point location to locate the cell that
contains the point.

3. Evaluate the cell’s velocities and coordinates at time
t by interpolating between simulation time steps.

4. Interpolate the velocity field to determine the
velocity vector at the current position, (x,y,z).

5. Integrate the local velocity field using equation (2) to
determine the particle’s new location at time t+At.

6. Estimate the integration error. Reduce the step size
and repeat the integration if the error is too large.

7. Repeat from step 2 until particle leaves flow field or
until t exceeds the last simulation time step.

5. Point location in tetrahedral cells

The core problem in all particle tracers is: given an
arbitrary point x in physical space, which cell does this
point lie in and what are its natural coordinates. The
natural coordinates are local non-dimensional coordinates
(see Figure 1) and are different from the computational
coordinates which are globally defined.

The widely used trilinear interpolation function (3)
provides the opposite mapping to that required, that is, it
determines the location of x from a given natural
coordinate (E,n,0). Unfortunately, equation (3) cannot be
inverted analytically because of the non-linear products, so
it has to be solved numerically using an iterative scheme
such as the Newton-Raphson method.

XEND = [Kyo(1-E) + X0 D(1-1) +
(Xy0(1-B) + %, BN 1A-0) +
[(%0, (1-8) + %, &)(1-m) +

(%5, (1-B) + %, EMIC €)

An alternative point location scheme has been developed
based on tetrahedral elements which allows the natural
coordinates to be evaluated directly from the physical

coordinates. The mathematical basis of this method will
now be described.

Figure 1. Tetrahedron geometry in natural (non-
dimensional) and physical coordinate spaces.

The simplest interpolation function for tetrahedral
cells is a linear one of the type in equation (4). It has four
coefficients which, in this case, are expressed in terms of
the nodal positions. The natural coordinates (En,() are
taken as per usual to vary from O to 1 in the non-
dimensional cell (see Figure 1).

x(En,0) = X + (xz'xl)g + (x3-x)N + (x4-x)C (4)

This function does not have any non-linear terms like the
trilinear function and can therefore be inverted analytically.
This is done by expanding and rearranging (4) into the
matrix form below. Note that x,, y,, and z, are the
coordinates of a given physical point and xy, y;, z;,... €tc.
are the physical coordinates at the vertices of the
tetrahedron.

Xp~X) Xo—X1 X3X; X4X; g
Yoo¥Yi] =] YY1 YY1 YaY1 |IM)
ZP_Z 1 ZyZ) Z37Z) 1477 E.n

This system of equations can be solved by inverting the
3x3 matrix on the right and then premultiplying it with
the vector on the left. The end result can be written as:

3) ay1 31z a3 | (XX
n|= v a1 azy az || Yy Y1 ©®
g 431 a3 a33 [\ ZpZ)

where the constants in the 3x3 matrix are given by:

= (242)(¥3-Yy — (Z5-2,X(¥4-Y,)
= (24‘11)(}'1')'2) - (Zl-zz)(yryl)

a3 = (22)(y1-Yp) — (Z1-2)(¥27Y3)
)y = (Xg-x X232 — (X3X)(24°2))
8y = (XX 22 — (X=X)z4°2))

= (X X3NZ-Zy) — (X;-X)(25Z3)

323

a3 = (VY PX3X9) — (¥3-¥)(X4-X,)
a3 = Oy = Gy)Rex)
43 = (V¥ (X)) = (¥,-¥)(XyK;)

and the determinant, V (actually 6 times the volume of the
tetrahedron), is given by:

V = &I (Y3'y1)(14'Z1)"(Z3'Zl)(Y4'Y1)]
+ XXl (7,-¥)@4-2)~21-2)(¥,4-¥,)]
+ (X4-x1)[(Y2'yl)(Z3'Z1)‘(Zz'zl)(y:§'yl)]

The natural coordinates (E,n,{) can be evaluated in 104
floating point operations by implementing the equations
above. This figure can be halved by precomputing
common terms before evaluating the matrix coefficients
and determinant.

6. Tetrahedral decomposition

Equation (6) can be applied directly to unstructured
grids containing tetrahedral cells. However, structured
curvilinear grids containing hexahedral cells or hybrid
grids containing mixed element types must be decomposed
into tetrahedra in order to use it. Since the datasets for
time-dependent flows are usually extremely large, it is
impractical to do the decomposition as a preprocessing
step. It must therefore be performed locally as particles
enter cells.

A hexahedral cell can be divided into a minimum of
five tetrahedra (Figure 2). This decomposition, however,
is not unique because the diagonal edges alternate across a
cell. Since the faces of a hexahedron are usually non-
planar, it is important to ensure that adjoining cells have
matching diagonals to prevent gaps. This is achieved by
alternating between an odd and even decomposition as
illustrated in Figure 2. In a structured grid, the correct
configuration is selected by simply adding up the integer
indices of a specific node (the node with the lowest indices
was used in practice). Choosing the odd configuration
when the sum is odd and the even configuration when the
sum is even guarantees continuity between cells.

X

Figure 2. Sub-division alternates between two
configurations to ensure continuity between cells.

7. Cell-search scheme

The previous sections discussed how to sub-divide
hexahedral cells into tetrahedra and how to evaluate the
natural coordinates of points within them. Those concepts
are now combined with an efficient point location scheme
to produce a cell-search technique which locates the
tetrahedron that bounds the physical point (x,y,,z,).

Equation (6) allows the natural coordinates to be
evaluated directly from the physical coordinates with
relatively little effort. There are four conditions which
must be valid for the point (x,,y,,zp) to lie within the
tetrahedron. They are:
E20 : =0 : {=0 : 1-E-nn-{=0
If any one of these conditions is invalid then the point is
outside the tetrahedron. In particle tracing algorithms, this
happens when particles cross cell boundaries. The problem
arises then of which tetrahedron to advance to next. The
solution is quite simple since the natural coordinates tell
you which direction to move. For example, if E<O, the
particle would have crossed the E=0 face. Similarly, if
1n<0 or {<0, the particle would have crossed the n=0 or
{=0 face respectively. If the fourth condition is violated,
i.e. (1-EM-0)<0, then the particle would have crossed the
diagonal face. The cell-search proceeds by advancing across
the respective face into the adjoining tetrahedron.

Occasionally, two or more conditions in (7) may be
violated if a particle crosses near the corner of a cell or if
it traverses several cells at once. In such cases, the worst
violator of the four conditions is used to predict which
next tetrahedron to try next. Even if the bounding
tetrahedron is not found in the immediate neighbour, by
always moving in the direction of the worst violator it
will converge upon the correct cell.

The cell search procedure described above should only
be used if the cell being sought is nearby, that is, within a
few cells of the previous one. This is usually the case
during particle tracing since the majority of particles only
cross one cell at a time. There are, however, two
situations when the cell being sought is not likely to be
nearby, these being: i) at the start of a particle trace and ii)
after jumping between grids in multi-grid datasets. Under
these circumstances the cell search should be preceded by
another scheme in order to prevent weaving across a large
grid one tetrahedron at a time. We use the ‘boundary
search’ technique described by Buning [15].

@)

8. Velocity interpolation in tetrahedra
The velocity components must be evaluated whenever
a particle changes position or whenever the integration
time step changes. They can be interpolated on the
geometric cell in physical space using linear interpolation

324

[14] or volume weighting [15], or on the unit cell in non-
dimensional space using linear basis functions [16]. All
three have been assessed in the present study and shown to
be equivalent, i.e., they produce identical interpolation
functions. However, one of them is much more efficient
and ties in with point location algorithm already described.

8.1 Physical space linear interpolation
The physical space linear interpolation function can
be written as:

u(x,y,z) = a +b x+c y+d z ®

where u is one of the three velocity components and x, y,
z the Cartesian coordinates. The constants a,, by, ¢, and d,
are evaluated by substituting the known values of u, x, y
and z at each of the nodes into this expression. The
resulting set of simultaneous equations can be written as:

-1

1 X3 9124 LS
by 1 x5 y22 us
=)
Cy 1 x3 y3 23 uj ©
u 1 x4 ¥4 24 Ug

where u, u,, U3, and u, are the velocity components at

each of the four nodes. Note that the constants a, b, ¢, and
d differ for each velocity component but the 4x4 matrix is
the same for all because it only depends on the cell
geometry. It turns out that nine of the coefficients in the
inverted 4x4 matrix are identical to those in equation (6).

Using this approach, the velocity components can be
evaluated in approximately 80 floating point operations
assuming that the matrix coefficients are reused from the
point location scheme.

8.2 Volume weighted interpolation

Volume weighting is a more popular interpolation
technique and has been used in several particle tracing
algorithms [10,15]. The interpolation strategy is to use
the volumes of four sub-tetrahedra as weights applied to
the velocity components at each node. These sub-
tetrahedra are created by connecting the interpolation
point, P say, to the four corners of the original
tetrahedron. The ratio of the volume of each sub-
tetrahedron to the volume of the whole tetrahedron gives
the weight assigned to the vertex opposite the sub-
tetrahedron. Using the notation in Figure 1, the volume
weighted interpolation function at point P is given by:

4V123P
V1234

, Viaip
Vi34

Visap
2
Vi34

\4
432P L o

Vi3s

up = u; +u +u

(10)

The volume of a generic tetrahedron, V , pp,, is given by:

VABCD = é(AD*(ABXAC) (11)
By expanding equation (10) using the volume definition in
(11), it can be shown that this interpolation function is
identical to the previous one. However, it takes 192
floating point operations to evaluate the four weights in
equation (10) which makes it more expensive than the
previous linear interpolation technique.

8.3 Linear basis function interpolation

The third and most popular technique for interpolating
within a tetrahedron is the linear basis function approach.
Using the same node numbering as before, the linear basis
function can be written as:

uEng) = u, + (Uz-ul)ié + (ug-um + (u4'u1)(: (12)
where E, 1) and { are the coordinates in the transformed
tetrahedron (see Figure 1). By substituting the expressions
for &, 7, and { from equation (6) into (12), it can be
shown that this interpolant is identical to that in (9). That
is, both the linear physical and linear basis interpolation
functions give the same interpolation result.

Since the natural coordinates are evaluated as part of
the point location scheme, it is clearly more efficient to
use the linear basis functions to evaluate the velocity
components than either of the other two methods. The
velocity components can be computed in just 27 floating
point operations by using linear basis functions.

9. Numerical integration scheme

The numerical integration of equation (2) was
performed with a standard 4th order Runge-Kutta scheme
which comprises of the following stages:

a=v(rt),t)At

b = v(rerd, t-if;—t)At
b At

cC = D+—, t+—) At
v(r(®) > U)

d = v(r(tH+c, t+At) At

rt+AD) =) + é @+2b+2%+0d 13)
where r is the particle position, v the velocity vector at
that position, and At the time step which is set by the
adaptive step size procedure described in the following
section. A consequence of multi-stage schemes such as
this one is that the velocities (and grid positions in a
moving grid) must be frequently interpolated between the
simulation time steps. In past [17] and present

325

algorithms, these quantities are linearly interpolated.
Darmofal and Haimes [13] have shown that linear
interpolation in time reduces the temporal accuracy of the
Runge-Kutta scheme from 4th to 2nd order.

The four stages of the Runge-Kutta scheme span three
time values (t, t+At/2, and t+At) and therefore require new
grid and velocity data at each one. Fortunately, these only
need to be interpolated in the cell surrounding a particle.
However, because a particle moves in time and space
during the integration, it may lie in different cells at
different stages of the integration, so point location is
required after each stage.

There is an important difference in the way the
integration is governed in unsteady flows compared with
steady flows. In steady flows the integration is usually
governed by the grid geometry, that is, particles are traced
from one face to another across a cell. In unsteady flows
the integration is governed by time and proceeds from one
time step to the next. The point location and velocity
interpolation procedures are called from the Runge-Kutta
scheme as required. Step size adaption occurs after each
complete integration step.

10. Curvature-based step size adaption

If the integration step size is fixed at a constant value
along the entire particle path, or regulated to achieve a
specified number of steps-per-cell, a particle may
understeer around bends if the flow changes direction
rapidly. This can be prevented by using an adaptive step
size control scheme where the integration step size is
changed according to an error tolerance.

The error tolerance can be computed using a standard
numerical technique such as step doubling [18] whereby a
particle is advanced forward from a given point using a
step size At and then the process is repeated from the same
point using two half steps of size At/2. The step size is
reduced if the distance between the end-points is greater
than a specified tolerance; a number usually deduced by
trial and error.

We implemented the step doubling algorithm and
tested it in several flows. The step size adaption worked
well, particularly in the vicinity of critical points,
although the performance was worse than a scheme which
used 5 steps-per-cell. That was because the step doubling
algorithm performed approximately twice the number of
numerically expensive point locations.

A heuristic technique for adapting step size was
suggested by Darmofal and Haimes [19]. They measured
the angle between velocity vectors at successive points
along a particle path to estimate the change in velocity
direction. If the velocity direction changed too much (over
15 degrees) the step size was halved, whereas if it changed
too little (less than 2 degrees) the step size was doubled.

We implemented this scheme and a very similar one
which measured the angle between successive line
segments on the path line (Figure 3). The latter scheme
adapted the step size according to the path line curvature.

Particle path

. e“
rit,))

_ (rtten — xt) « (o) — rta)
[t -] 1t - xttan]

cos O

Figure 3. Step adaption is based on the pathline curvature.

Both of these schemes worked well in practice and ran
approximately three times faster than the step doubling
algorithm. In both cases, the initial step size was
estimated using:

1 2fv
At = 1/—
[u]Y 6

where lal is the magnitude of the velocity at the current
position and V is the determinant from equation (6).
Following this initial estimate, the step size was halved if
the angle 0, was too acute (0,>15°), doubled if it was too
obtuse (0,< 3°), or kept the same if it was in between
these limits (3°< 0, < 15°).

Through experimentation in several datasets we found
the curvature-based algorithm produced similar particle
traces to the step-doubling scheme when adaption angles
of 15 degrees (upper limit) and 3 degrees (lower limit)
were used. The curvature-based algorithm produced particle
traces of superior accuracy when the upper limit was
lowered below 12 degrees.

14

11. Performance evaluation

The performance of the tetrahedral algorithm was
compared with a conventional hexahedral algorithm [17]
in two time-dependent datasets. The conventional
algorithm used trilinear functions for spatial and velocity
interpolation and an iterative Newton-Raphson method for
point location. Both algorithms used 4th order Runge-
Kutta integration schemes but used different step adaption
techniques. The conventional algorithm used a semi-
adaptive (5 steps-per-cell) scheme whereas the tetrahedral
algorithm used the heuristic curvature-based method.

The missile dataset (Table 1) comprised of a single
static grid with 500,000 grid points and 795 time-varying
velocity fields. Each velocity field was approximately 4
MB (Megabytes) in size which yielded a total of 3.3 GB
(Gigabytes) for the entire dataset. Sixteen particles were
released at each simulation time step.

The V-22 tiltrotor dataset consisted of 26 grids (9 of

326

which moved) containing 2.5 million grid points. We
used 140 out of a total 1,400 simulation time steps, each
one consisted of 100 MB of data. There were 120 particles
released at each time step resulting in over 15,000 active
particles being traced by the end of the simulation.

The execution times shown in Tables 1 and 2 have
been divided up into the main algorithmic tasks and are
given in both seconds and as a percentage of the total
execution time. Computations were performed on a
Convex 3420 with a striped disk system (16 heads).

Missile dataset (795 time steps)
Tetrahedral Hexahedral
point location 503 (63.2%) 1159 (24.5%)
velocity interp. 45 (5.6%) 2058 (43.5%)
integration 73 (9.2%) 336 (7.1%)
step adaption 6 (0.7%) 445 (9.4%)
data manager 103 (13%) 662 (14.0%)
/O & system 66 (8.3%) 71 (1.5%)
796 (100%) 4731 (100%)

Table 1. Break-down of execution times for the new
tetrahedral algorithm and a conventional hexahedral
algorithm in a single-zone dataset. Times are given in
seconds and as a percentage of the total execution time.

Table 1 shows that the tetrahedral algorithm ran about
six times faster than the hexahedral algorithm in the
missile dataset. Every aspect of algorithm is more
efficient although the most significant gain comes from
the velocity interpolation. This is because the point
location and velocity interpolation are closely coupled in
the new tetrahedral algorithm and the majority of the
work, namely, computing the natural coordinates (€,n,0),
is done during the point location.

In the V-22 dataset (Table 2), the speed advantage of
the tetrahedral algorithm was obscured because of the
addition of grid jumping; the process by which particles
cross grids in a multi-grid dataset. Grid jumping is an
infrequent process, it occurs on average once every 1,000
point locations, yet it takes the majority of the execution
time in this case (57.4%). Results from the hexahedral
algorithm show that the point location and velocity
interpolation are the most expensive tasks, grid jumping
is much less significant taking only 11% of the execution
time. Clearly, the performance of the new tetrahedral
algorithm could be significantly improved in multi-grid
datasets with faster grid jumping code.

Future work will involve testing alternative grid
jumping schemes such as the donor-receiver point method

[20] in which a pre-computed look-up table is used to
predict where a particle ‘lands’ after a grid jump.

V-22 tiltrotor dataset (140 time steps)

Tetrahedral Hexahedral
point location | 928 (26.4%) | 1250 (27.1%)
velocity interp. 77 (22%) 1139 (24.7%)
integration 105 (3.0%) 327 (7.1%)
step adaption I 7 (0.2%) 277 (6.0%)
data manager 169 (4.8%) 890 (19.3%)
VO &system || 210 (6.0%) 21 (4.8%)
| _grid jumping_ || 2018 (57.4%) | 507 (11.0%)
3514 (100%) | 4611 (100%)

Table 2. Break-down of execution times for the tetrahedral
and hexahedral algorithms in a multi-zone dataset.

Plates 1 and 2 show stills at time steps 550 and 654
from an animation of streak lines flowing around the
missile. Streak lines generated using both the hexahedral
(magenta dots) and tetrahedral (cyan lines) algorithms are
shown in these pictures. As can be seen, there is virtually
no difference between the particle paths generated by each
algorithm,

Plates 3 and 4 show stills from an animation of the
V-22 at time steps 56 and 140. The particles could not be
rendered as streak lines because the flow was turbulent and
had a great deal of recirculation which made it difficult to
connect the points. Particles were released from a fixed
location above the rotor blades which resulted in the
distinct gaps as the blades cut through the descending
sheet of particles. Considering the turbulent nature of this
flow, there is very good agreement between particles
computed with the tetrahedral and hexahedral algorithms.

Acknowledgements

Carl Hsieh of the Naval Surface Warefare Center
provided the missile dataset and Robert Meakin of Overset
Methods Inc. provided the V-22 dataset. We thank Michael
Gerald-Yamasaki for the simple technique he suggested for
choosing the appropriate cell sub-division, and all our
other colleagues in the NAS Division for providing ideas
and information. This work was supported by NASA
under contract NAS 2-12961.

References

[1]1 A. Globus, A Software Model for Visualization of Large
Unsteady 3-D CFD Results, AIAA 95-0115, AIAA 33rd
Aecrospace Sciences Meeting and Exhibit, Reno, 1995.
D. Lane, Scientific Visualization of Large Scale

[2]

327

(31

(4]

(51

(61

[7]

[8]

91

(10]

{11]

[12]

[13]

[14]

[15]

[16]
(171

(18}

[19]

[20]

Unsteady Fluid Flow, Scientific Visualization: Surveys,
Methodologies and Techniques, ed. G.M. Nielson et al.,
IEEE Computer Society Press, 1996.

S. Shirayama, Processing of Computed Vector Fields for
Visualization, Journal of Computational Physics, Vol.
106, pp 30-41, 1993.

R. Haimes, pv3: A Distributed System for Large-Scale
Unsteady CFD Visualization, AIAA 94-0321, ATIAA
32nd Aerospace Sciences Meeting and Exhibit, 1994.
R. Lohner and J. Ambrosiano, A Vectorized Particle
Tracer For Unstructured Grids, Journal of Computational
Physics, Vol. 91, 1990, pp 22-31.

D. Lane, Parallelizing a Particle Tracer for Flow
Visualization, Proceedings from the Seventh SIAM
Conference on Parallel Processing for Scientific
Computing, 1995, pp 784-789.

S. Bryson and C. Levit, The Virtual Windtunnel: An
Environment for the Exploration of Three-dimensional
Unsteady Flows, Proceedings of Visualization ‘91, IEEE
Computer Society Press, 1991, pp 17-24.

P. Eliasson, J. Oppelstrup, and A. Rizzi, Stream 3D:
Computer Graphics Program for Streamline
Visualization, Advances in Engineering Software, Vol.
11, No. 4, 1989, pp 162-168.

P. Buning, Sources of Error in the Graphical Analysis of
CFD Results, Journal of Scientific Computing, Vol. 3,
Number 2, 1988, pp 149-164.

A. Sadarjoen, T. van Walsum, A. Hin, and F. Post,
Particle Tracing Algorithms for 3-D Curvilinear Grids,
Proceedings of the 5th Eurographics Workshop on
Visualization in Scientific Computing, Rostock,
Germany, 1994.

J. Hultquist, Interactive Numerical Flow Visualization
Using Stream Surfaces, Ph.D. dissertation, University
of North Carolina at Chapel Hill, May 1995.

T. Pulliam, Efficient Solution Methods for Navier-
Stokes Equations, Lecture notes from the von Karman
Institute for Fluid Dynamics Lecture Series, Belgium,
January 1986, pp 78.

D. Darmofal and R. Haimes, An Analysis of 3-D Particle
Path Integration Algorithms, Proceedings of the 1995
AIJAA CFD Meeting, 1995.

T. Chung, Finite Element Analysis in Fluid Dynamics,
MCGraw Hill, 1977, pp 60-93.

P. Buning, Numerical Algorithms in CFD Post-
Processing, in Compuer Graphics and Flow
Visualization in Computational Fluid Dynamics, von
Karman Institute for Fluid Dynamics Lecture Series,
1989-07, Sept 1989.

G. Dhatt and G. Touzot, The Finite Element Method
Displayed, J. Wiley, 1984, pp 110-113. .
D. Lane, Visualization of Time-Dependent Flow Fields,
Proceedings of Visualization ‘93, IEEE Computer
Society Press, 1993, pp 32-38.

W. Press et al, Numerical Recipes, Cambridge
University Press, 1986, pp 554-560.

D. Darmofal and R. Haimes, Visualization of 3-D Vector
Fields: Variations on a Stream, AIAA 92-0074, AIAA
30th Aerospace Sciences Meeting and Exhibit, Reno,
Nevada, January 1992.

J. Hultquist, Improving the Performance of Particle
Tracing in Curvilinear Grids, AIAA 94-0324, AIAA
32nd Aerospace Sciences Meeting and Exhibit, Reno,
Nevada, January 1994,

Plate 1. Streak lines from the missile dataset at time steps 550 and 654. Cyan lines
depict those generated by the tetrahedral algorithm and magenta dots
(unconnected for clarity) depict those by the hexahedral algorithm.

Plate 2. Time-dependent particle traces from the V-22 tiltrotor dataset at time steps 56
and 140. Particles generated by the tetrahedral and hexhedral ailgorithms are
coloured cyan and magenta respectively.

328

